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ABSTRACT 

This paper describes algorithms for factoring a polynomial in one or 

more variables, with integer coefficients, into factors which are irreducible 

over the integers.   These algorithms are based on the use of factorizations 

over finite fields and "Hensel's Lemma constructions. "   "Abstract algorithm" 

descriptions are used in the presentation of the underlying algebraic theory. 

Included is a new generalization of Hensel's p-adic construction which 

leads to a practical algorithm for factoring multivariate polVi.omials.   The 

univariate case algorithm is also specified in greater detail than in the 

previous literature, with attention to a number of improvements which the 

author has developed based on theoretical computing time analyses and 

experience with actual implementations. 

+ 
Computer Sciences Department and Mathematics Research Center,  University of 

Wisconsin; on leave from University of Texas.   This work was sponsored in part 
by the National Science Foundation under grants GJ2 39, GJ-3012 5X and GJ-1069, 
by the United States Army under Contract No. DA-31-124-ARO-D-462, and by 
the Wisconsin Alumni Research r mndation. 

Da/id R.  Musser 

Technical Summary Report #1445 
July 1974 



MULTIVARIATE POLYNOMIAL FACTORIZATION 

David R.  Musser 

1.   Introduction and basic concepts. 

This paper presents algorithms for factoring a given polynomial in one 

or more variables, with integer coefficients, into factors which are 

irreducible over the integers.   These algorithms are based on the use of 

Berlekamp's algorithm for factoring modulo a prime and "Hensel's Lemma 

constructions" as suggested by Zassenhaus [ZAS69].   A new generalization 

of Hensel's construction is given, providing a practical basis for an 

algorithm for factoring multivariate polynomials. 

The algorithm for the univariate case has been implemented by 

G. E. Collins and the author in the SAC-1 system for algebraic calculation 

[ COL71 ] and tested thoroughly.   A detailed description of this implementation 

is given in [COL72].   Both the univariate and multivariate algorithms have 

been implemented in the Pascal language at the University of Texas by 

R.  T.  Charleton [CHA73]. 

Following a brief discussion of notation and basic concepts of factor- 

ization and use of homomorphic mappings, we shall define the concept of an 

abstract algorithm. in order to present concisely the common theory behind 

the univariate and multivariate algorithms.   Section 2 gives an overview of 

the main steps in factorization, followed by detailed abstract algorithms 

in Section 3.   In Sections 4 and 5 we consider the details of applications of 

'Computer Sciences Department and Mathematics Research Center,  University 
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and by the Wisconsin Alumni Research Foundation. 



the abstract algorithms to the unlvarlate and multivariate Integral polynomials. 

Some consideration Is given to computing times In these sections. 

1.1.    Polynomial notation 

A polynomial  A(x) = a x   +... + a.x + a,,   with coefficients   a  ..... 
n 10 n'       ' 

a   a     from a ring  R , a   * 0 , Is said to have degree   n, leading coefficient 

a    , and trailing coefficient (or constant term) a„; we write 
n  r • 0 

deg(A) = n , lc(A) = a ,   tc(A) = a . 

By convention, we define 

deg(0) = -oo,   lc(0) = 0 ,   tc(0) = 0 . 

If  R   has an Identity  1 , we say   A(x)   Is monlc if   lc(A) = 1. 

1. Z.    Unique factorization domains 

In a commutative ring with Identity, zero-dlvlsors are elements   y and 

z   such that   y • z = 0.   A unit Is a divisor of unity, and a prime Is a nonunlt 

element which cannot be expressed as a product of nonunlt elements.   An Inte- 

gral domain Is a commutative ring with Identity which contains no zero-dlvlsors. 

A unique factorization domain (UFD)   Is an Integral domain in which every non- 

zero element is a unit, or Is prime, or has a unique factorization into primes 

(an expression as a product of a finite number of primes which is unique except 

for unit factors and the order of factors). 

Primes are also called Irreducible elements, and a unique factorization 

Into primes Is often called a complete factorization. 

The Integral domain  Z  of Integers Is a UFD (Fundamental Theorem of 

Arithmetic), In which the only units are   I  and   -I.   Any field   F  Is a UFD  in 

which every nonzero elemenL is a unit and there are no Irreducible elements. 
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According to a theorem of Gauss [VDW49,   §23],  the polynomial domain 

Dfx, ...,x  ]   Is a UFD  whenever   D   Is.    Thus, for example,    Z[x.,...,* ] 

and   Pfxt,....X 1   are UFD's. 1  I'        '   nJ 

I. 3.    Homomorphlc mappings 

A mapping   h   from a ring   R   Into a ring   R  Is called a homomorphlsm 

If for all  a, b € R , 

(1) h(a+b) = h(a) + h(b) , 

(2) h(ab) = h(a)h(b) . 

The application of homomorphlc mappings to factorization Is based on 

the factor preserving property (2).    The classical algorithm for factoring poly- 

nomials, Kronecker's algorithm [VDW49,   §25], Is based on the use of evalua- 

tion homomorphlsms.      For any fixed   a c R,  the mapping   e     of   R[x]   onto   R , 
a 

defined by   e (P) = P(a)   for all   P(x) c R[x],  Is homomorphlc and Is called an 
a 

evaluation homomorphlsm.    To factor  P(x) c Z[x], for example, Kronecker's 

algorithm evaluates   P(x)  at several Integers, factors the resulting values In 

Z , and constructs the factors of   P{x)   using Interpolation. 

Another well-known application of homomorphlc mappings to polynomial 

factorization Is the use of mod p factorizations, where   p   Is a prime Integer. 

Let   P{x) c Z[x]  and   p   be a prime which does not divide the leading coeffi- 

cient of   P .    Let   h     denote the homomorphlsm of  Z  onto   Z ,  the ring of 
P P 

Integers modulo   p .   Z    Is actually a field,  so   Z [x]  Is a UFD.    If   h (P) 

turns out to be Irreducible over  Z  ,  then  P   Is Irreducible over  Z (except 

possibly for Integer factors).   If  h (P)   does factor, then Its factorization 

gives an Idea what degrees the factors of  P   might have, and what residue 
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classes the coefficients modulo   p   iiilght belong to.    These facts have long 

been used in the limitec     'mber of cases in which   h (P)   is easy to factor, 

e.g.    [VDW49,   §25].   More general applications of mod p homomorphisms have 

become possible since the invention in 1967 by Berlekamp of efficient algorithms 

for factorization in  Z [x]   ([BER68, Ch. 6],  [KNU69,  §4.6.2]).    A second break- 

through was Zassenhaus' suggestion that a construction based on Hensel's 

Lemma, from the theory of  p-adic fields, could be used to progress from   a 

mod p   factorization to a corresponding factorization modulo any power of   p 

[ZAS69],    Taking   p    sufficiently large, we can determine from consideration 

of all mod   p    factorizations all factorizations over the Integers.    This 

" Berlekamp-Hensel" factorization algorithm has been Improved and extended 

In a number of ways, as discussed previously in [BER70] and [MUS71].   [COL7 3], 

Section 5, gives an overview of this research.    The author's main contributions 

have been the detailed specifications and Implementation of a univarlate fac- 

toring algorithm, with extensive analysis of maximum computing times, and 

generalization of Hensel's construction to several moduli as a basis for a new 

multlvariate algorithm.   Wang and Rothchlld [WAN73] use a different generaliza- 

tion of Hensel's construction, but as yet no comparison of the merits of the 

two constructions has been made. 

1. 4.    Abstract algorithms and validity proofs 

In this paper we shall use "abstract algorithm" descriptions In order to 

present compactly the common theory behind factoring algorithms for both the 

univarlate and multlvariate cases and for a number of coefficient domains.   An 

abstract algorithm Is one In which the domains of the Inputs and outputs are 
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abstract sets or algebraic systems such as rings, integral domains, or fields. 

An example of an abstract algorithm is: 

Algorithm D    (Division of polynomials over a ring).    Let  R   be a com- 

mutative ring with identity.    Given polynomials   A, R « R[x]  with   lc{B)   a unit 

of  R,  this algorithm computes polynomials   Q, R € R[x]   such that 

A = BQ J- R  and   deg(R) < deg(B). 

(1)   Set  0*- 0   and   R«- A . 

<Z) (Now   Q,  R € «[x]  and  A = BQ + R. )   If  deg(R) < deg(B), exit. 

(3)   Set   n - deg(R) - deg(B),    T *■ (lc(R)/(lc(B))xn,   Q «- Q + T , 

R-«- R - TB (this reduces the degree of   R), and go to (2). 

In dealing with abstract algorithms we leave open the question of what 

assumptions are required about the abstract domains involved in order to prove 

effectiveness of the algorithm.    (Such questions have been dealt with else- 

where, e. g.    [RAB60]. )  We shall however   require that, under the assumption 

that each step can be effectively performed, the algorithm will terminate in a 

finite number of steps.   A proof of termination of Algorithm D   is Indicated in 

the parenthetical assertion in step (3):   by the choice of the term   T   of the 

quotient polynomial   Q , both  R  and   TB   have the same leading coefficient, 

hence the new value of  R, R   = R - TB, is of smaller degree than that of   R , 

and thus the condition tested in step (2) must eventually be satisfied. 

If we do not require effectiveness in our abstract algorithms,  the 

reader may well ask, by what criteria do we construct them?  For we could in 

some steps of our algorithms merely cite the existence of some quantity with- 

out any indication of a method of constructing the quantity.    However, all of 
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the algorithms to be presented have been written with the purpose of general- 

izing methods which are known not just to be effective in particular domains, 

but to be "very effective"   or "efficient" methods.    This is meant in the sense 

that each step of the abstract algorithm is of sufficient simplicity that there 

are known to be efficient algorithms for carrying it out in at least one particular 

domain.    In Algorithm D, for example, each step involves only simple arith- 

metic operations for which efficient algorithms are known when   R   Is the ring 

of integers, or the rational number field, or a finite field. 

Besides the proof of termination, we are also Interested In proving the 

validity of the algorithm:     that when applied to inputs which satisfy the Input 

assumptions, the algorithm produces outputs which satisfy the output asser- 

tions.    The method of proof to be used Is based on the method of "inductive 

assertions" described In [FL067] and [KNU68, §1. 2,1].    The basic Idea of the 

method Is to associate with some or all of the steps or substeps of the algo- 

rithm assertions about the current state of the computation, and to prove that 

each assertion Is true each time contiol reaches the corresponding step, under 

the assumption that the previously encountered assertions are true.    If this can 

be done In such a way that the assertions associated with the first step are the 

Input assumptions and those associated with the terminal step(s) are the output 

assertions, then the algorithm Is necessarily valid, by Induction on the number 

of steps performed. 

In applying the method we have usually not attempted to list all of the 

assertions which actually hold at each step; In general we have tried to main- 

tain about the same degree of expllcltness as Is usual In a conventional proof 
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of a theorem.    In Algorithm D, we have included only two assertions, in step 

(2), for the purpose of proving validity (the assertion in step (3) was included 

for the sake of proving termination, as discussed previously).   It is trivial 

that these assertions are true the first time step (2) is executed.   Assuming 

them true at a given execution of step (2), they may be shown to be true at the 

next execution as follows:   Let Q. = 0 + T  and   R   = R - TB;   since   lc(B)   is 

a unit,   T e R[x],    hence so are  Q,   and   R.;   also   BQ. + R, = B(Q + T) + R - 

TB = BQ + R = A;   since   0   is set to  Q.   and   R   to   R.   in step (3), the asser- 

tions   Q, R c R[x]  and  A = BQ + R  still hold when step (2) is reached again. 

The abstract algorithm concept may be easily formalized in terms of 

conventional set theory, and in fact such a formallzatlon is given by Knuth In 

his initial formal definition of Mgorlt ms   fKNU68, pp. 7-8].   (Knuth goes on 

to modify this definition to Include ths property of effectiveness. )   The Induc- 

tive assertion method Is also easily formalized In terms of Knuth's model, as 

shown In [MUS71]. 
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2.    Overview. 

In Section 3, we shall state the basic algorithms for factorization in 

D[x]   where   D  is any  UFD.   In Sections 4 and 5 we consider separately the 

cases that   D = Z   and   D = Z[v ,... , v ].   Assume we are given a polynomial 

C(x) c D[x]  to be factored, i.e.   we are given a representation 

^,i  y m m-l _ C(x) = ex    + c     .x        + .. . + c   , c   € D 
m m-i ü      i 

and we must determine the factors of  C(x)   which are irreducible over   D . 

The following are the essential steps of the overall algorithm: 

1. First eliminate proper factors of degree zero and repeated factors 

by means of greatest common divisor calculations In   D  and   D[x]. 

(These steps are sufficient to satisfy some of the assumptions made in 

later phases of the algorithm, particularly Hensel's construction. ) 

Thus we have 

C(x) = jT F (x) 
1=1    I 

where the   F    are distinct Irreducible polynomials of positive degree, 

and our task Is to determine these   F  . 

2. Choose   p,,...^     In   D   such that factorization In   Efxl   Is 
1' m l  J 

possible, where   E = D/(p ,... , p   ).   (With  D = Z, we will have 

m = 1, choosing a single prime integer   p  and   E  will be   Z   = GF(p), 

the Galois field of order   p.    With   D = Z[v.,... ,v ]  we will have 

m = n+1, choosing a prime   p  and lintsar polynomials   v.-a ,.. . , v  -a 

as the moduli;   again  E = GF(p). ) 

-8- #1445 



3.   Obtain a factorization 

CHCIFG     (mod p ,. . . ,p   ) 

c =lc(C),    Gk€ D[x] 

not necessarily complete, but such that each   F    corresponds to a 

product of one or more of the   G. ;   I.e.    there is a partition of 

(GLi..*tO)   into subsets   *,,...,£    suchthat x   V TJ 1'       '   q 

Fi ~ fi "^    G  (mod Pl Pm) 

G«! 

f, = Ic^) . 

4. Using Hensel's construction, lift the   G     to corresponding 

H   t D[x]   such that 

C = c TT    Hk   (mod Pj ,... jp^ ) 
k=l 

for sufficiently large positive integers   j.,... ,j 

5. Partition the   H,    into subsets  IT.   such that 
J. I 

F  H   f.    M       H    (mod   p.1,...,?/") 
1        1 H « V 1 m 

thereby determining the   F. . 

In order to simplify the presentation, we shall confine the discussion 

in Section 3 to the case of a single modulus and defer generalizations 

to several moduli to Section 5. 
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3.   Abstract factoring algorithms 

3.1. Reduction to a primitive polynomial.   If   C(x) = c. t D   then we 

merely factor   c.    in   D ;   we assume the existence of an algorithm 

for this factorization.   Otherwise, we compute the greatest common 

divisor   d   of   c   , ..., c     (called the content of   C   in   D)   and divide 

C(x)   by   d,    thereby obtaining a primitive polynomial   C (x) ,    i.e. 

one whose coefficients are relatively prime.   Thus    C (x) ,    called the 

primitive part of   C(x)   (denoted   pp(C))   has no proper factors of degree 

zero, and this property simplifies the task of factoring   C (x) .   We 

proceed to factor   d   and   C (x)   and combine the two lists of factors 

to produce the list of factors of   C(x) . 

3.2. Reduction to squarefree polynomials.   Given a primitive polynomial 

C(x)   over   D ,    we proceed to factor it into squarefree polynomials, i.e. 

having no repeated factors.   Using greatest common divisor calculations 

we obtain a factorization 

C . QQJ ••• Q* (1) 

where   0.    is the product of all the irreducible factors of   C   with 

multiplicity   i .   We then factor each   Q   ,    putting   i   copies of each 

factor on the list of factors of   C . 

The algorithm for producing the factorization (l) is based on 

Theorem S below.   For its statement we require two definitions: 

Elements   x   and   y   in a ring   D   are said to be associates if   x = uy 

for some unit   u   of   D .   We write   x~ y   (this is an equivalence relation). 
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The characteristic of a ring D is the smallest positive integer n 

such that nx = 0 for all x in D , or zero if no such integer exists. 

(If   D   is an integral domain, the characteristic is prime if it is not zero.) 

Theorem S ■    Let   D   be a UFD, C   be a nonconstant, primitive 

polynomial over   D,    and   B = gcd(C, C)   where   C   denotes the 
e e 

derivative of   C .    Let   C = P,     • • • p       be a complete factorization of   C . 
I n 

a. If   deg(B) = 0   then   C   is squarefree. 
e -1 e -1 

b. If   D   has characteristic zero, then    B ~ P, • • • P 
* I n 

c. If   D   has characteristic zero and   C   is squarefree, then   B ~  I . 

d. If   D   has characteristic zero, then    C/B ~ P    • • •  P   ,    the 
' 1 n ' 

greatest squarefree divisor of   C . 

2 
Proof:  a.   Suppose   C   is not squarefree; thus   C = P Q   for some 

P   and   Q   over   D, deg(P) > 0 .   Then   C = P^' + ZPP'Q   is a multiple 

of   P,    hence    P|B,    hence   deg(B) > 0 .   Thus   deg(B) = 0   implies 

C   is squarefree. 

b.   Since    B | C, B ~ P 
I 

Pn,    where   0<6   <e.,   l<i<n 
n   ' —   i —   i'      —   - 

To show that   6. = e - 1,    let   P = P,, e = e.    and   Q = C/P    .   Then 
i       i r i 

C ■ PeQ   and   C = P^' + eP^P'Q,    hence   P6"1 |B .   Suppose   Pe|B . 

Then   ?e\c,,    hence   Pe|ePe~ P'Q ,    and since    D   is an integral 

domain,    PleP'Q .   But   P   and   Q   are relatively prime,  so   PleP' . 

Since the characteristic of   D   is zero,    eP' # 0 ,    hence   degleP") > deg(P) , 

a contradiction.    Thus    P^B ,    while   Pe     |B ,    so   5, = e - 1  = ei - 1 . 

c,d.   Obvious from   b . 
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Thus to factor   C   one could compute the greatest squarefree 

divisor   A = C/gcd(C, C)    and factor it to obtain the   P   ,    then divide 

C   by   P,    as many times as possible, to determine the   e   .   However, 

we can do better than this if   C   is not already squarefree, for we will 

show that we can then partially factor   A   and determine the   e    by 
i 

means of further   god   calculations. 

Let   0   =     TT   P, ,    where   E   =  {j:e. = i} .   (Q   = I    when 
1     H E.    J J 

E    is empty.)   Then, for   t = max{e ,...,e  }   we have 

C « O.Qj •*' Qj i    Oj   squarefree, 

deg(Qt) > 0, gcd(Q,,Q,) ~  1    for   i # j . (2) 

We call (2) a squarefree factorization of   C ,    since each   Q,   is either 

unity or a squarefree polynomial of positive degree.   The    Q    are uniquely 

determined by the conditions in (2), except for unit factors. 

By Theorem S ,    if   B = gcd(C, C)   and   A = C/B   then 

B~ Q2Q^ ••• Q*"1    and   A~ Q.Q   • • • Qt .    If   D = gcd(A, B)   then 

D ~ Q?Q   • • * Q   ,    hence   0   ~ A/D .   The following algorithm shows 

how we can continue,   computing   Q_,.. ., Q : 

Algorithm S (Squarefree factorization).    Let   D   be a UFD of 

characteristic zero.   Given a primitive polynomial   C   of positive degree, 

2 t 
let   C = Q 0   • • • Q    be a squarefree factorization of   C .   This 

•       * 

algorithm computes   t   and   A   ~ 0., • • •, A  ~ Q   . 
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(1) Set   B - gcd(C, C), A*- C/B, j «- 1  . 

(2) (Atthispoint   B~ Q,     of     ••• Qj"j   and   A~Q.Q.      •••Q) 

(3) 

(4) 

If   B ~ 1    then set   t *- j, A  ♦- A ,    and exit. 

Set    D «-gcd(A, B), A. - A/D.    (Then    D ~ Q,   .Q,., •♦*Qt 

and   A, ~ 0. •) 
J        J 

Set   B - B/D, A - D,  > - ) H ,    and go to (2). 

The reader may easily verify the inductive assertions in the algorithm. 

Algorithm S is based on an algorithm presented by Horowitz in 

[ HOR69,  pp.  58-60,  69-70], which in turn was based on an algorithm 

due to Robert Tobey.   Horowitz' version is equivalent to Algorithm S with 

steps (3) and (4) replaced by: 

(3')      Set    E *- gcd(B, B'),  D - B/E, A. - A/D .    (Then 

E~ Q.   ,0" 
jt2   j+3 

Q 
t-j-i 

(4*)      Set   B *-E,  A - D, j - j + l,    and go to (2). 

Note that   D   and    E = B/D   are computed in both versions, but 

in different ways.   Algorithm S appears to require slightly less computation 

than Horowitz' version, but its main virtue seems to be that it can be 

easily adapted for squarefree factorization over finite fields (which are 

of prime rather than zero characteristic), whereas it appears to be rather 

difficult to adapt Horowitz' version for this problem.   Algorithms for the 

finite field case are discussed in [ MUS71].   These algorithms are, 

however,  not necessary in the application to factoring integral polynomials, 

as will be seen in the following section. 
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3.3.   Choice of modulus.   Now assume   C(x)    is primitive and square free. 

We next choose a modulus   p   such that factorization in   E[x]    is 

possible, where   E = D/(p) .   We shall see in Section 3.7 that in 

order to apply the Hensel construction to lift a given factorization 

C 5 AB(mod p) (1) 

to a corresponding factorization 

C ■ AB(mod pj) 

it is necessary to also have   S, T   such that 

AS + BT = l(mod p) . (2) 

Sufficient conditions for the existence of   S, T   are that   E   be a field 

and   A   and   B   be relatively prime over   E ,    for then the Extended 

Euclidean Algorithm yields    S   and    T .    Let us assume that we can find 

p   such that   E   is a field and   C   has the same degree and remains 

squarefree   mod p   (i.e. when regarded as a polynomial over   E).   Then, 

in (l),    Ä   and    B   must be relatively prime, and thus (2) is satisfiable. 

As we saw in Theorem S,  oart a, if we compute   B = gcdlCjC) in E[xl 

and find deg(B) =0then this guarantees that   C   is squarefree in   E[x] . 

In the case   D = Z ,    we choose a prime integer   p ,    obtaining 

E = GF(p) ,    the Galois field of order   p .   We shall see in Section 4.1 

that there are only a finite number of primes   p   for   which   C   can fail 

to be squarefree   mod p .   There are a number of other considerations 

in the choice of primes in   Z   as we shall discuss in Section 4.1. 
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3.4.  Factorization   mod p.   Since we have chosen   p   so that E   is a field, 

E[x]    is a UFD.   We assume the existence of an algorithm for factoring 

in   E[x] ,    but not necessarily one which obtains the complete factoriza- 

tion of   C mod p .   A partial factorization 

C = g  TT  G (modp) (1) 
k=l    K 

will suffice,  provided the   G.     are distinct and there exists a partition 

of the   G,     into subsets corresponding to the irreducible factors    F 

of   C ,    as described in Section 2,  step 3.    Ideally, we would like to 

find the factorization in which each   G    is the image of some   F, ,    but 

generally there is no a priori way of satisfying the partition requirement 

other than obtaining the complete factorization in   E[x) .    We shall see, 

however,  in Section 5 a very important case in which it can be satisfied 

with a partial factorization. 

Since    E   is a field,  it is convenient to assume the    G.     are monic. 
' k 

Then   g = lc(C)(mod p) . 

Of course, if we find that   r = I    then since    C(x)    has the same degree 

modulo   p ,    it must be irreducible over   D ,    and we are done.   Other- 

wise we have to continue with the following steps. 

3. i.   Determining modulus size.   In choosing our modulus    p ,    we gave 

no consideration in Section 3.3 to its "size."   If   D = Z   and   p   is 

sufficiently large, then the set    {- LP/2J , ..., 0,.. ., LP/ZJ )   of 

residues of   p   contains the coefficients of any factor of   C ,    and we 
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could proceed directly to determine the true factors of   C   using the 

mod p   factorization.     For large   p,    however, it may be very difficult 

to obtain the mod p   factorization (this point ts discussed further in 

Section 4.1).     Hensel's construction provides the alternative of using 

a small prime   p   and lifting a   mod p   factorization to a   mod p 

factorization for sufficiently large   j . 

J 

In the case of an abstract domain   D ,    our assumption at this 

point is that we can algorithmically determine a positive integer   j    and 

a complete set of residues    R   of   p   ,    such that   R   is a factoring 

set for   C .   In general, we define a factoring set for    C   to be any subset 

of    D   which contains the coefficients of any facLor   A^   of 

C'' =   lc(C)-C   for which    deg(A"') < Ldeg(C)/2J   and    lc(A") I lc(C) . 

These requirements may seem odd, but will become clear when we examine 

the operation of the algorithm for finding true factors,  in Section 3.8. 

3.6.    Lifting a factorization (Hensel's construction for several factors). 

At this point we have a primitive,  squarefree polynomial   C* D[x],  p t D 

such that   E = D/(p)   is a field and   C   has the same degree and is 

squarefree mod p,   a positive integer   j   and monic polynomials 

G , ...,G  c D[xl(r>2)    suchthat 

C s lc(C)G. 
1 

G (mod p) . 
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The goal now is to lift this factorization to a corresponding one 

mod p   ,    i.e. 

C = lc(C)H H (mod pJ) 
r 

H   ■ G.(mod p) 

deglH.) ■ degCG.)       >     i - l,...,r . 

H,    is monic 
i -' 

This is done by repeated application of Hensel's construction to pairs 

of factors in which one factor is    G.    and the other is    G,       • • •  G   . 
i i + l r 

1. Set   C - C mod p,   i - 1  . 

2. (Now we have 

a. CL = CH    • • • H.    (mod p )   where   Cn    was the 0 i i-r 0 

initial value of   C ; 

b. Hk = G (mod p), deg(H ) = deg(G ),    and    H      is 

monic for   k = 1, . .., i - 1; 

c. C = C = lc(C)G.G.  , • • • G (mod p); ii+l r 

d. C   is squarefree   mod p.) 

Set   A*-G,,  B - C/A   (division   mod p).    (Thus    C= AB(mod p), 

A   is monic, and   A   and   B   are relatively prime    mod p , 

byd.) 

3. Using the Extended Euclidean Algorithm, obtain    S, T t D[x] 

suchthat   ÄS + BT = l(mod p). 

4. Apply Algorithm 0 (Hensel's construction, as described in 

Section 3.7) to   p, j, C, Ä, B, S, T,    obtaining   A, B, S, T€D[x) 
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such that 

C ■ AB(mod pj) 

A = A(mod p) 

B ■ B(mod p) 

deg(A) = deg(A) 

A   is monic . 

5.     Set  H   *- A,  C •- B,  C - B, i *- i + 1 .   If   i < r ,    go to 

step 2.   Otherwise, exit. 

3.7.    Quadratic Hensel construction.    This "quadratic" construction,  so- 

2    4    8 
called because it progresses through factorizations    modulo p, p , p , p , ... 

in successive iterations, will be given in essentially the form discussed 

by Knuth [ KNU69, pp.  398,   546].    This version differs somewhat from 

the construction proposed by Zassenhaus [ ZAS69], although the latter 

is also quadratic in nature.    (Hensel's original construction, in the 

theory of p-adic fields, was linear [ VDW 49, pp. 248-250].) 

Algorithm Q    (Quadratic Kensel Algorithm).   Let    D   be a commuta- 

tive ring with identity.   The inputs are an element   p   of   D;     a 

positive integer   j;   and polynomials    C, A, B, S, Tt D[x]    suchthat 

C ■ ÄB(mod p), AS h If ■ l(mod p), Ä   is monic. 

The outputs are   q = p    where   i > j    and   A, B, S, T t D[x] satisfying 

C ■ AB(mod q),  AS + BT = l(mod q) ^ 

AsÄ, B = B, S = S,  fm T(mod p),      S (l) 

deg(A) ■ deg(A)    and   A   is monic. 
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1. Set   i- I,  q - p, A - A,   B - B,  S •   S,   T * T . 

2. (Now   q = p ; A, B, S, T t D[xl    and the conditions (l) are 

satisfied.)   If   i > j ,    exit. 

3. Set   U *- (C - AB)/q .   (Since    C = AB(mod q)   we know 

U t D[x] .)   Using Algorithm S, which is described below, 

with inputs   A, B, S, T, U,   solve the congruence   AY + BZ = U(mod q) 

for   Y, Zc D[x]    suchthat   deglZ) < deg(A) . 

4. Set   A   - A + qZ, B   *- B + qY .    (Thus 

C - AV" = C - AB - q(AY + BZ) - q2YZ 

= q(U - AY - BZ) - q2YZ 

2 
= 0(mod q ) ; 

* - * _ 
furthermore   A   = A = A(mod p)    and    B   = B = B(mod p);    and, 

since    deg(Z) < deg(A), deg(A ) = deg(A) = deg(A)    and 

lc(A ) = lc(A),    so   A     is monic.) 

5. Set   U   -^ (A S + B^T -l)/q .    Using Algorithm S with inputs 

A, B, S, T, U   ,    solve the congruence   AY   f BZ   = U (mod q) 

for   Y ,Z   € D[x]    such that   deg(Z ) < deg(A) . 

6. Set    S" -^ S - qY ,  I   «^ T - qZ    .    (Thus 

A""S* + B'T"" = A*(S - qY )  ► B""(T - qZ ) 

■ AVS + B"'T - q(A"CYi + B*Z1) 

■ 1 + q(U1 - A5'^ - B*Z1) 

=  1 + q(U1 - AY1 - BZ^mod q2) 

=   I (mod q  ).) 
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7.     Replace   i,q,A, B,S,T   by   2i, q  , A , ß ", S', T     and go to step 2. 

Note that we did not need to assume   D   was a UFD, but only a 

commutative ring with identity.   The algorithm of Section 3.6 also 

works under this weaker assumption.   In Section 5 we shall see applica- 

tions of these algorithms when    D   is commutative with identity but 

fails to be an integral domain. 

Algorithm S    (Solution of a polynomial equation).   Let   E   be a 

commutative ring with identity.   Given   A, B, S, T, U c E[x]    suchthat 

lc(A)   is a unit of   E   and   AS + BT = 1,    this algorithm computes 

Y, Z t E[x]    such that   AY + BZ = U   and   deg(Z) < deg(A) . 

1. Set   V - TU . 

2. Using Algorithm D of Section 1.4, compute   Q, Z t E[x]    such 

that   V = AQ < Z, deg(Z) < deg(A) . 

3. Set   Y - SU + BQ   and exit.    (Then   AY + BZ = A(SU 4 BQ) + 

B(TU - AQ) = (AS + BT)U =  U) . 

In Section 3.9 we shall prove two Iheorems concerning the uniqueness 

of the outputs of Algorithms S and Q. 

3.8.    Finding true factors.    Having obtained the   mod m = p     factors 

H , .. ., H     of   C   from the algorithm of Section 3.6, we must now consider 

each combination of these factors, testing by trial division whether its 

modulo   m   product is a true factor.    Since we do not know the leading 

coefficient of the factor, it is necessary to form the factor with leading 
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coefficient   c = lc(C)   and attempt to divide it into   C'  = c- C.    If 

this division successfully yields a factor   A     of   C     then   pp(A )   is 

a factor of   C .   Only those combinations with   deg(A ) < Ldeg(C)/2J 

need be considered.   From these considerations we can now see the 

motivation for the definition given in Section 3. 5 of a "factoring set"    R 

for   C :   a set which contains the coefficients of any factor   A     of   C 

for which   deg^") < Ldeg(C)/2J   and   lc(A')|c. 

Algorithm T     (Finding true factors by combining modulo   m factors). 

Let   D   be a UFD,    m   be an element of   D   and    R   be a complete set 

of residues of   m   in    D .   Given a primitive polynomial   C t D[x] 

and a list of monic polynomials    H , .. ., H   t  D[ x] ,    such that 

C = lc(C)H    •• •  H (mod m) 
1 r 

this algorithm obtains irreducible   F  , . . ., F    t D[x]    comprising the 

complete factorization of   C: 

C = F    • • •  F    . 
1 Q 

The following conditions are assumed to be satisfied. 

a. R   is a factoring set for   C . 

b. For each factor   F     there is an index set   L C {l, . . .,r} 

such that 

Fk = lc(Fk)   TT   H.(mod m) 
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Remark:   In Section 3.9 we shall show that the   mod m = p 

factors    H , . . . f H     produced by the algorithm of Section 3. 6 satisfy 

assumption b. 

1. Set   q •- 1, d •- 1. (d  will run through tne integers 

1,2, ...,Ldeg(C)/2j) . 

2. Set   c - lc(C), C   «-e*C . 

3. (Now we have a, b   and 

c. C. = C  TT     F.(mod m)    where    C    = initial value 

of   C ; 

d. F , . .., F are irreducible ; 

e. C ■ lc(C),  C    = cC ; 

f. C   has no factor   B   such that    0 < deg(B) < d.) 

If   d > Ldeg(C)/2J ,    set   F   *■ C   and exit. 

4. For each   IC {l,...,r}    suchthat     2J    deg(.'j  = d: 
i€ I l 

a. Set   A   — c    I 1     H   mod m ,    with coefficients in    R . 
it I 

b. If   A  |C   ,    set   B   — C /A     and go to step 6. 

5. Set   d ♦- d M    and go to step 3 . 

6. Set   A - pp(A ),  F   - A, q «- q ^ 1,   C - B /lc(A) ,     and 

delete from   H , ...,H     those    H     with   i t I   (this changes 

r) . 
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3.9.     Correctness of the overall algorithm.    To establish the correct- 

j 
ness of the overall algorithm we have to prove that the modulo   m = p 

factorization obtained by the algorithm of Section 3. 6 satisfies the 

input assumption   b   of Algorithm 3.8T, namely that to each true factor 

F     of   C   there is some corresponding set of factors    H    in the 

modulo   m   factorization. 

To this end we first prove: 

Theorem S.   Under the assumptions of Algorithm 3.7S, the poly- 

nomials   Y   and   Z   are uniquely determined. 

Proof:   Let   AY   + BZ   = U   with   deg(Z ) < deg(A).   Then 

AY   + BZ   = AY ♦ BZ,    which may be written 

JKY| - Y) = B(Z- ZJ, (1) 

Upon multiplying both sides by   T   and adding   AS(Z - Z )   to both 

sides, we obtain 

A[S(Z - Z^ ♦ T(Y1 - Y)]  = (AS + BT)(Z - Z ) • 2- Z . 

Unless the polynomial in brackets is zero, the degree of the product on 

the left side is    > deg(A),    since   lc{A)   is a unit.   But 

deg(Z - Z ) < deg(A),    so we conclude that   Z = Z     and by (i) we then 

have   A(Y   - Y) = 0,    which, with the fact that   lc{A)   is a unit, 

implies   Y   = Y. 

The following theorem concerns the uniqueness of the polynomials 

computed by Algorithm 3.7Q: 
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Theorem Q.    Let   D   be a commutative ring with identity,    p   be 

an element of   D   which is not a zero-divisor,  and   j   be a positive 

integer.   Let   A, B, A , B , S, T t D[x]    satisfy 

a. A,8, = AB(mod pJ) 

b. deg(A ) = deg(A), IcfAj = lc(A) = I; 

c. A   = A   and   B   = B(mod p); 

d. AS + BT = l(mod p). 

Then   A   = A   and   B   = B(mod pJ). 

Proof:   From   c   we have the conclusion when   j = 1.   Let   j > 1 • 

From a, we have   AB   = AB(mod p     ),    so we may assume by induction 

that   A   = A   and   B   2 B(mod p     ).   Hence there exist   Y, Z e D[x] 

suchthat   A   = A + p^^, B   = B + p^Y.   Thus 

AB    ■ AB + p^lAY + BZ)  f p2J~2YZ, 

0 = p^^AY + BZ)(mod pj). 

From this congruence and the assumption that   p   is not a zero-divisor 

follows 

AY + BZ= 0(mod p). 

Also, by b we have   deg(Z) < deg(A).   Hence by Theorem S applied to 

the ring   D/(p)   we have   Y = Z= 0(mod p),    from which we obtain 

the conclusion of the theorem. 

We are now prepared to prove: 

Theorem T.    Let   D   be a UFD and   p   be an element of   D   for 

which   D/(p)   is a field.   Let   C € D[x]    for which   p-(lc(C)   and   C 
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is squarefree   mod p.    Suppose   C   has the factorizations 

C = F    •■■?.?,   distinct, irreducible; 
1 q'    i ' 

C ■ cG,  • • • G (mod p) 
1 r 

C = cH1 • • • Hjmod pj) 

c = lc(C); G , H   monic; 

Hj ■ G^mod p); 

and that   {l. ..., r}   is the disjoint union of index sets   I , ..., I 
i q 

such that 

FkHfk   TI   G^modp) 
1 £ lk 

fk - lc(Fk) . 

Then also 

Fk = fk  TT    H.(mod pj) . 
i£lk 

Proof:   Since   p 4lc(C),    also   P T f.    and   f,       exists   mod p. 

It is easy to show that   f.      exists   mod m = p    also.   Put 

AH f^F^mod m) , 

B ■ C/A(mod m) , 

k 

A1 H TT     H^mod m) , 

B   so     IT       H (mod m) ,        I={l,...,r}. 
i« I - I, 

k 
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Then we have 

a. A, B, 2 AB(mod m) 

b. d»f(A ) = deg(A), lc{A^) = lc(A) = 1 

c. A   H A   and   B   = B(mod p). 

d. Since   C   is squarefree   mod p,   A   and    B   are relatively 

prime   mod p   and there exist   S, T   such that 

AS + BT s l(mod p). 

Therefore, by Theorem Q,    A   = A   and   B   ■ B(mod m)   and therefore 

Fk H fk TT H^mod m) , 

as was to be shown. 
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4.   Application to univarlate polynomials over the integers 

To obtain algorithms for factoring univariate polynomials over the 

integers, we take    D = Z   and choose a prime integer   p   as the modulus, 

so that the   mod p   factorizations are factorizations of polynomials over 

E = Z/(p) = Gr(p)   the Galois field of order   p.   GF(p),    and more 

generally,    Z/(m)   with   m = p    is conveniently represented by the 

integers    0,1, 2,.. ., m-1,    with arithmetic performed modulo   m.    The 

"symmetric residues"   - [m/Zj, ,. . ,0, .. . Im/Z]   (m odd)    could also 

be used.    Division of    a   by   b ,    with   b   relatively prime to   m , 

can be performed using the Extended Euclidean algorithm to compute 

multipliers    s,t   such that   bs <- mt = 1,  so that   bs H 1 (mod m)    and 

as = a/b (mod m).   Arithmetic modulo   m   is discussed further in 

[KNU69,    §4.6. 1] and [COL69]. 

4.1.    Choice of a prime.    The first consideration in the choice of a 

prime   p   is that the squarefree polynomial   C(x)   must remain squarefree 

modulo p.   Since   C   is squarefree, the discriminant of   C,   discr(C), 

is a non-zero integer.    Let   C = C mod p.   If   p   does not divide   lc(C) 

then   discr(C) - discr(C) mod p,    so if   p   is not a divisor of discr(C) 

then   discr(C) # 0   and   C   is squarefree.   Hence    C mod p   is squarefree 

for all but a finite number of primes; and in fact, for a given   p,    C mod p 

is squarefree with probability   1 - 1/p    [ KNU69,  Ex. 4. 6. 2-2].   We 

can efficiently test whether   C   is squarefree by testing whether 

gcd(C, C') = 1   in   GF(p)[x],    where   C'   is the derivative of   C. 
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The size of primes used is an important factor in the choice of 

an algorithm for factoring over   GF(p).   Trying large priines would reduce 

the chances of encountering primes for which   C mod p   has repeated 

factors, and would also reduce the number of Hensel's construction 

iterations required to make   p     sufficiently large.    However, Berlekamp's 

1967 algorithm for complete factorization over   GF(p)   is efficient only 

for small primes.   The algorithm has two phases.   In the first phase the 

number,    r,    of irreducible monic factors of the input   C   is determined. 

If   r > 1,    the second phase is performed to determine the actual factors. 

3 2       2 3 
The computing time for the first phase is dominated by   n (log p)    + n (log p)  , 

2 2 
where   n = deg(C)   and the time for the second phase by   n rp(log p) . 

[KNU69,   §4.6.2]. 

A newer algorithm devised by Berlekamp [ BER70]    is more efficient 

for large primes, at least in terms of average computing time.   This 

algorithm has an average time dominated by a polynomial function of   n 

and   log p   but the maximum ccmpuling time may be codominant with 

n p(log p)  . 

By contrast, the maximum time for the quadratic Hensel construction 

to lift a   mod p   factorization to a   mod m = pJ  factorization is dominated by 

2 2 
n (log m)   + n(log m)log c ,    where   c   is the maximum size of coefficients 

of   C    [MUS71].   Thus use of Berlekamp's original algorithm with a 

small prime   p   followed by Hensel's construction is probably much 

more efficient than to use Berlekamp's newer algorithm with a large prime. 
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Another consideration is that the newer algorithm is considerably more 

complex than the earlier algorithm. 

The third major consideration in the choice of a prime    p   ir. the 

number   r of factors in the complete   mod p   factorization.    If   C    is 

irreducible, but splits into   r > 1    irreducible factors mod p,  then   r 

factors are also obtained   mod m = p     and a total of   2 subsets 

of factors are considered in Algorithm 3.81.   The time for all other phases 

of the overall algorithm is dominated by a polynomial function of   n   and 

log c   (this is shown in [ MUS7 1 ]), but since   r   can be as large as   n , 

the time for Algorithm 3.8T can be an exponential function of   n.    The 

average time for randomly chosen inputs    C   (which are almost always 

irreducible IKNU69, Ex. 4.6.2-27]), is a polynomial function of   n 

and   log c,    since it can be shown that the average value of   r   is 

about   log n   and the average value of   2 is about   (nU)/2.    How- 

ever, the variance of   2 is quite large, about   (n -n)/24,    causing 

a large variance in the overall computing time. 

In order to reduce this variance one can factor modulo sevrral 

small primes for which   C mod p   is squarefree and choose a    p   which 

yields the smallest number of irreducible factors.   Unfortunately, no 

matter how many primes are used, the maximum computing time will 

still be exponential in   n:   H.P.F. Swlnnerton-Dyer has shown (see 

[ BER70]) that for any   n   which is a power of 2,  there is an irreducible 

integral polynomial of degree   n   which has at least   n/2   irreducible 
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factors modulo   p   for every prime   p.   By considering the size of the 

coefficients of these polynomials, the author has established that the 

computing time of any Berlekamp-Hensel algorithm for factoring integral 

polynomials cannot be dominated by a polynomial function of   n   and 

log c.    The same result can also be established using a certain class 

2 
of cyclotomic polynomials which have more than   (log n)      factors for 

every prime. 

Finding an algorithm for factoring integral polynomials with a 

polynomial dominated maximum computing time (or proving no such 

algorithm can exist) is a very interesting open problem.   Nevertheless, 

it may not be a problem of great practical importance since the average 

time of the Berlekamp-Hensel algorithm is polynomial dominated. 

There are other advantages to be gained from performing factoriza- 

tions modulo several different primes.   By considering the possible 

degrees of factors in these factorizations, we obtain important information 

about the degrees of true factois.   if   C   has   r   irreducible   mod p 

factors, then in a time dominated by   rn   we can compute the degree 

set   D ,    the set of degrees of all   mod p   factors.   Since the chosen 
P 

primes do not divide   lc(C),    the degree set of   C   must be contained 

in   D     for any prime   p   and therefore must be contained in 
P 

D      flD      O-«-  flD     ,    where   p^p,,...^     are the primes tried. 
p1 P2 Pv 1    2 v 

In general, this set can be used to eliminate many of the cases that 

would otherwise have to be considered in Algorithm 3.8T; and in 
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particular, when   C   is irreducible, we will often find 

D     D D      D • • •  = {0,n}    after only a few primes have been tried, n n ' Hl H2 
thus proving irreducibility of   C   without having to use the Hensel 

construction or Algorithm 3.8T at all.    The author has verified, by 

empirical tests,  simulations and theoretical analysis, that the average 

number of primes which must be tried before proving irreducibility is 

less than 5 for all    n < 200. 

This "degree testing algorithm" is a much more efficient means 

of proving irreducibility than merely searching for a prime    p    for which 

C   is irreducible   mod p.    For the probability that a random polynomial 

C   is irreducible modulo a given prime    p   is only about   1/n 

[ KNU69,   Ex.  4. 6. 2-4] and by the Chinese remainder theorem these 

mod p    "trials" are independent,  so an average of about   n   trials 

would be required to prove irreducibility. 

In order to compute the degree set   D     it is not necessary to 

factor completely   mod p.   One can use the "distinct degree factorization1 

algorithm described in [ KNU69, p.   389] and[COL69].   Given a monic 

squarefree polynomial   A   over   GF(p),    this algorithm produces a 

list   L = {(d., Aj, ..., (d ,A ))   where the   d,  are positive integers, 

d. < d    < • • •  < d     and   A.    is the product of all monic irreducible 
12 si 

factors of   A   which are of degree    d,.   Thus    A = A. • • • A     and this 
i Is 

is a complete factorization just in case no two irreducible factors of 

A   have the same degree. 
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From the list   L   it is easy to construct a list   A =   {6 , 6  , ..., 6 } 

of the degrees of all irreducible factors of   A,   and from    A   one 

constructs the degree set    D   of degrees of all factors as follows: 

put   D =  {0}   and for   i ^ 1, . . .,r   replace    D   by   D U  {d + 6. :d <  D}. 

As remarked above, the time to compute the degree set from    A  is 

dominated by   rn. 

Another way of finding    A   without performing a complete factoriza- 

tion of   A   would be to perform only the first phase of Berlekamp's 

newer algorithm, in which a matrix of polynomials is computed in a 

block diagonal form.   If   A   has    r     irreducible factors of degree   i, 

then there is an   r. x r     block of polynomials of degree    i.   One could 

compute the determinant of the block, which is the product of all 

irreducible factors of degree    i,    and thus obtain the distinct degree 

factorization.   But   A   is determinable directly from the matrix.    The 

computing time of this phase of the algorithm has not been analyzed, 

but it is possibly faster than the distinct-degree factorization algorithm, 

3 2        2 3 
whose time is dominated by   n (log p)   + n (log p)  . 

Of course, if the degree tests fail to establish irreducibility, then 

a prime   p   is selected among those which yield the smallest number 

of irreducible factors, and the complete factorization must be obtained 

for this prime.   With the distinct degree factorization,   this is 

accomplished by applying Berlekamp's algorithm to each   A.    for which 

d. # deg(A,),    the other   A.    being irreducible already.    If the first phase 
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of   Berlekamp's newer algorithm has been used,  then one merely continue J 

with the rest of the algorithm. 

4.2.    Computing a bound on the coefficients of factors.    The height 

of a polynomial   C{v , .. ., v )   with complex coefficients is defined to 

be the maximum of the absolute values of the coefficients.   We saw in 

Section 3. 5 that in order to fully determine the true factors of   C(x) 

from its modulo   p     factorization it was necessary to have   p /2 larger 

than the height of any factor of   C(x).    Thus an a priori bound on the maximum 

height of factors of   C(x)   is required.    Typically, the height of every 

factor of   C(x)   is no larger than the height of   C(x)   itself, but there exist 

3       2 
polynomials with factors of larger height, e.g.    x   +x   -x-l = 

2 
(x +2x4l)(x-l).    An excellent bound on the height of factors which is based 

only on the height and degree of   C(x)    is given by A. 0. Gelfond in [ GEL60, 

pp.   13 5-140].    In fact, Gelfond establishes the bound for multivariate 

polynomials    C(v., . . . ,v ) - CAv,, . . ., v ) • • •  C   (v., .. .,v ):   if   n,     is the 
Is 1   I'       '   s m   r       '   s k 

degree of    C   in   v , n = n   + •• •  + n ,    and   H(C)   denotes the height of 
K, 1 S 

C,    then 

H(C) ••• H(Cm) < 
1 m 

(^ + 1) • • • (n   + 1) 
2nH(C) . (D 

Gelfond shows that this bound is essentially realizable. 

In the univariate case, a number of other bounds have been used,  as 

discussed in [MUS71, Section 3.4] and [MIG74].    The bounds discussed in 

[ MUS71 ],  however, require more computation with the coefficients of    C(x) 
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than (l),  yet generally give a much larger bound.    Mignotte [ MIG7 4] 

improves an earlier theorem of Gelfond which gives a bound similar 

to the univariate case of (l). 

4.3.    Hensel's construction.   In Algorithm Q, if the coefficients of the 

initial values of   A, B, S, T   are chosen in the symmetric residue set 

{-[p/ZJ, . .., 0, . .., LP/2J }    and in Algorithm S the coefficients of    Y 

and    Z   are chosen in the symmetric residue set   R   =  {-[p /2J, . . .,   [p /2j} 

then it is easy to show that the coefficients of   A, B, S, T   lie in    R . 

k k-1 
Upon termination, we have   i = 2    > j > 2    "    for some   k,    and if   i > j, 

the coefficients of   A, B, S, T   are larger than necessary, making computa- 

tions in Algorithm T more expensive than necessary.   This may be 

corrected by modifying steps 2-4 as follows: 

2. [Done?]    If   i = j,    exit.    (This exit is taken only if   j = 1.) 

3. [Compute   Y, Z. ]    if    2i > j,     set   q - pVq,  A - A mod q, 

B — B mod q, S - S mod a.  T - T mod q,    taking the coefficients 

of   A, B, S, T,    in   R~.    Otherwise, just put   q - q, A — A, 

B - B, S *- S,  T *- T.    Set    U - (C - AB)/q   and apply 

Algorithm S to   A,i, S, T, U,    obtaining   Y, Z€Z[x]    such 

that   AY + BZ = U(mod q)   with coefficients in    R~    and 

deg(Z) < deg(A). 

4. [ Compute   A*, B*   and check for end. ]     Set   A* - A + qZ, 
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B* - B + qY.    (Then   C = A:::B!::(mod qq), A* ■ A(mod p), 

B:': £ B(mod p),   |lc(A!:;)l < p/2    and the coefficients of   A* 

and    B*   are bounded by   qq/2.)    If   2i > j    (in which case 

qq ■ pJ),    set   A - A*,  B <- B*   and exit. 

This modification also avoids computing    S   and   T   at the last 

iteration,  since they are not used in further computations. 

4.4.    Finding true factors.   There are two modifications of Aigorithm 3.8T 

which can be of very significant benefit in the application to factoring 

univariate polynomials over the integers.    First, one should add as an 

extra input the set   i5=D     (ID      D-'-OD       computed from the p 
v Pl P2 

mod p.    degree sets and append the test    "If   d t jß ,    go to step 5. " 

to step 3.   This may greatly reduce the number of cases considered. 

Secondly, a "trailing coefficient test" should be inserted in step 

4a: 

"a.   Set   t *- c TT  tc(H,) mod m, t •- R;    if   t -j- tc(C*)   then 
itl X 

continue to the next index set.    Otherwise,  set   A* *   • • • ". 

Thus, if   t   fails to divide   tc(C*),    we know   A*   cannot divide 

C!;:   and the computation of   A*   and the trial division of   C!;:   by   A::: 

are skipped. 

Except in rare cases, this trailing coefficient test will in fact 

eliminate most of the computations of   A*   that are not true factors 

and will thus greatly reduce the average computing time of the algorithm. 
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S.   Application to multivariate polynomials over the integers 

Suppose now we are given a polynomial    C t Z[ v , .. ., v , x] 

to be factored.    The most direct way of applying the abstract algorithms 

of Section 3 to this problem is to take   D = Z[ v , ... ,v  ]    and the 

modulus    p = v    - a     for some integer   a  .    That is, we evaluate    C 
n       n n ' 

at   v    = a ,    thereby obtaining a polynomial   C t E[x].    where 

E = Z[ v , .. ., v      )    (E = Z   if   n = 1).   We recursively factor   C, 

resorting to the univariate algorithm of Section 4 when all of the   v 

are eliminated.   We then try to lift the factorization of   C   to a correspond- 

ing factorization of   C modulo (v    - a ) n   where   j     is chosen to 
n       n n 

exceed the degree of   C   in   v  .    Unfortunately this is not directly 

possible,  since    E   is not a field and we cannot necessarily find, 

corresponding to a factorization    C ■ AB,    multipliers S   and    T c E[x] 

such that   AS + BT = 1,    as is required in the Hensel construction. 

However,  if we back up and take    D = Q(v , . . .,v ),    the field of 

rational functions of   v., .. .,v ,    v.-e still have   CtDfx], p = v   -a   (■ D 
1        '   n' ' n       n 

and   C -- Cfv,, . .., v    ,, a ) « E[xl,    where now   E = Ofv,, . . ., v    .) 
1' n-l    n ' 1'       '   n-1 

is a field and the Hensel construction can be applied. 

The problem with this direct approach is that it requires many 

rational function computations, which are generally much more expensive 

than computations with polynomials (because of the   gcd   computations 

required to keep results in lowest terms). 
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Another, probably better approach would be to restrict the 

coefficient computations to   D = Z[ v ,..., v  ]    by using a "trial Hensel 

construction."   This construction uses polynomials    S, T t E[x]    and 

r c E = Zf v , v    ,1    for which   AS + BT = r,    in an attempt to und a 1   1' n-1 
Jn 

factorization   C = AB (mod (v   - a )   ), A, B e D[x]    corresponding to 

a factorization    C = AB (mod v   - a ).   The attempt may fail, but it 
n      n 

is not difficult to arrange the computation so that the construction is 

guaranteed to succeed it   Ä   and   B   correspond to actual factors of   C, 

This approach has the drawback that the polynomials    S   and   T   must 

be obtained independently (by a version of the Extended Euclidean 

Algorithm). 

The algorithm to be discussed in this section avoids these problems 

by using a generalization of Hensel1 s construction which works 

simultaneously with several moduli.   We take    D = Z[ v., . . ., v  j 
1'       '   n 

and moduli p   (a prime integer) and   v, -a,-.-,v    -a.    Thus 
1     1'        '   n       n 

C ■ C(a., .. .,a , x) mod p   is a univariate polynomial in    E[x],    where 
1 n 

E = GF(p)   as in the univariate case.   A factorization    C = AB   can be 

1 jl jn 
lifted to a corresponding factorization   C = AB (mod p , (v   - a.)   , . . ., (v   - a )    ), 

A, B i D[x]    by the generalized Hensel construction.    This construction 

works entirely with polynomials with integer coefficients (no rational 

function operations) and increases the moduli quadratically. 
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The abstract algorithms of Section 3 have been stated only for a 

single modulus, but we shall describe in this section the changes and 

additional algorithms necessary to generalize to several moduli. 

5.1.    Choice of evaluation points.   Given    C € Z[ v , . . ., v , x]    we 

first reduce to the case in which   C   is primitive and squarefree as in 

Sections 3.1 and 3. 2.    Note that for the assumed algorithm for factoring 

the content of   C   in    D = Z[v, ...,v  ]    we just apply our multivariate 

algorithm recursively with one fewer variable. 

Next we choose integers   a,,.... a     such that the univariate 
1' n 

integral polynomial   C(x) = C(a, ...,a  , x)   has the same degree in   x 

as   C   and is squarefree.   The following algorithm first chooses   a 

trying   0,±1,±2,...    until finding a value such that   A= C(v , ..., v      ,a ,x) 

has the same degree in   x   as   C   and is squarefree.    In the same way, 

a _i» • • •» 3]    are chosen so that the evaluated polynomial remains of the 

same degree and squarefree at each stage. 

1. [Initialize.]   Set   C-C, k-n. 

2. [ Prepare to choose   a, . ]    Set   a ♦- 0,  c — lc(Ö). 

3. [Evaluate   c    and   C at   v    = a].   (Now    Ct Z[ v , ..., v  , x], 

deg (C) = deg (C),   C    is squarefree,  and 

c = lc(C) t  Z[v1, ...,vk].)   If   cCv^ . . .,vk_1,a) = 0,    go 

to step 4.   Otherwise, set   A«-C(v, ...,v      , a,x) e Z[ v , . .., v      ,x] 

B — gcd(A,aA/8x)-   If   deg (B) > 0   (in which case   C is not 
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squarefree), go to step 4.   Otherwise,  set   a.  *-a, k —k - 1, 

C ♦- A.   If   k > 0,    go to step 2; otherwise, exit. 

4.    [Try again.]   If   a > 0,    set.   a --a;   otherwise,  set   a «-1 - a. 

Then go back to step 3. 

Termination of this algorithm can be shown by considering at 

step 3 the discriminant of   C,    which is an element of   Z[v.,...,v,] 

and can be divisible by only finitely many linear polynomials   v   - a, . 

In the ideal case, this algorithm chooses all of the   a     equal to 

zero and the coefficients of   C    are just the constant integer terms of 

the coefficients (in   Z[ v.,.. ., v ])   of   C.   In case one or more of the 

a     cannot be chosen to be zero, we have a problem of potentially serious 

coefficient growth with each    a. # 0,    and the coefficients of   C   might 

be huge.   Although this problem has not been analyzed in detail, it 

seems unlikely that the problem would appear except very rarely. 

5.2.    Choice of a prime and factorization over   GF(p).   We can now 

choose a prime   p,    put   C = C mod p,    and factor   C   completely 

over   GF(p),    thus obtaining a factorization of   C modulo p, v -a, ...,v   -a  . 

In this factorization, however, we again have the problem of the likelihood 

of there being several factors corresponding to each irreducible factor 

F     of   C.   We can avoid this problem, except in rare cases, by 

considering the complete factorization of our univariate polynomial 

C{x).   Suppose that the numerical coefficients of each factor   F,    of   C 
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are random integers and that the evaluation points   a , . .., a     result 

in the factors 

Fk(x) = F|Jal''",an'x) 

having random integer coefficients. Since almost all polynomials over 

the integers are irreducible (see [KNU69, Ex. 4.6.2-27]), it is highly 

nrobable that 

C=F1-.-Fq (1) 

is the complete factorization of   C.   Thus, if we obtain the complete 

factorization of   C,    we will only rarely have any more factors than 

in (1), in contrast to the case with complete factorizations over   GF(p). 

Therefore, our procedure is this:   factor   pp(C)   completely, using 

the univariate case algorithm, obtaining 

C = c- pp(C) = c- C. • • • C ,  c = content (C). 

If   r = 1,    then   C   is irreducible and we are done.   Otherwise, choose 

a prime   p   such that   C = C mod p   has the same degree as   C    and 

is squarefree modulo p.    Then, instead of factoring   C   completely 

over   GF{p),    just put 

ö.   = C.  mod p 
k        k 

Gk H lc(Gk)"1 Gk(mod p) 

so that 

C = eG. • • • G (mod p, v. - a,,..., v   - a ) 
1 r 1       1        '   n       n 

c = lc(C), G   monic. 
(2) 
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Thus we have only a partial factorization of   C modulo   p, v   - a., ..., v   - a , 

but one which does satisfy our partition requirement (Section 2, step 3): 

suppose    {!,..., q}   is the disjoint union of index sets   I,..., I 

such that 

^'HiJl    Ci(modv1-a1,....Vn-an).   ^ . Z, 
i£lk 

Then 

FkHlc(Fk)   TT    G^mod p,v1 - a^ ...,vn - an). 
i£lk 

Thus the factorization (2) can be used as a basis for constructing c. 

j Ji L 
mod ^ = (p , (v. - a.)   , . . ., (v   - a )    )    factorization from which the 

'1      1    '       'v n       n 

true factors   F.    can be determined, and we can see that by the way (2) 

was obtained we will usually have only one   mod %  factor corresponding 

to each true factor. 

Although the univariate factoring algorithm determined some prime 

in the process of factoring   C,    it is not necessary to choose   p 

equal to this prime.   It is better now to choose a large prime (since we 

don't have to worry about finding a complete factorization   mod p)   to 

reduce the number of Hensel construction iterations.    We could,  by 

choosing   p   large enough, eliminate entirely the phase of the construction 

which lifts from   p   to    p\    but this might mean that   p   would be a 

multiple precision integer and all of the   mod p   arithmetic during the 

other phases of the algorithm would be multiple precision.   The best 
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course would seem to be to choose   p   as large as possible while 

constrained to be in single precision integer, on the machine on which 

the algorithm is implemented. 

5.3.     Generalized Hensel construction.   Algorithm 3.7Q, the Quadratic 

Hensel construction for a single modulus, may be regarded as an 

algorithm for lifting a factorieation from one residue class ring to 

another:   let 

E+ = D/(pJ) 

E = EV(P) - D/(p). 

Given 

C = AB, AS + BT = 1, Ä   monic in   E[x], 

Algorithm 3. 7Q obtains 

C = AB, AS + BT = 1, A   monic in   E+[x], 

A = A   and   B s B(mod p). 

In this construction   D   is only required to be a commutative ring with 

identity, and thus can itself be a residue class ring of the same form 

as   E .   This suggests we can generalize the construction to any 

number of moduli.   To do so, suppose   p ,..., p   « D, j.. . K   are 

U 
positive integers and   m. = p,   l<i<k.   Define 

D1 = DAmvP2,...,pk) 

D2 = D/(mi» m2' p3' • • •' Pjc^ 

Dk ■ D/dBj, . ..,mk). 
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and note that   D, = D   ./(p.   ,), 0 < i < k - 1.   Given 
i        i+l      i+l        ~    - 

c = AoBo' Aoso + BoTo = l' Ao  monic in   Do[x1' 
we perform,  for   i = 0,1, .. ., k - 1,    Algorithm 3. 70 with    E = D., 

E+ - Di+1' P = Pi+1' j = ji+l'    lifting 

C = A.B., A.S. + B.T. = 1, A,    monic in   Djx], 
i i'    i i       ii       *    i il   " 

to 

C = Ai+lBi+l' Ai+lSi+l + Bi+lTi+l = l'  Ai+1   m0niC in    Di+l[x1' 

Ai+iEAi and Vi^V^Pi+P- 

We obtain 

C = h^ k^S^ + BkTk = 1, ^   monic in    Djjx] 

Aj^ = A0   and   Bk ■ B0(mod p^ P2, • • •, Pk) • 

To apply this to multivariate factorization, take   D = Z[v ,. . .,v  ], 

= P k = n + 1, p.  = v. - a., m. = (v, - a.) 1   for   1 < i < n,    and   p  ,. 
'    i       i      i'     i      v  i       i _   -   > tj^ 

(prime integer).   For simplicity, assume all of the   a.    are zero.   Thus 

D. 

D. 

■ Z[ v^ ..., vn]/(v1, . .., vn, p) ■ GF(p) 

= Z[v1,...,v>,]/(m1,v_, ...,v^,p) = GF(p)[vJAm.) 
1 n '1'   2 n 1 T 

D2     ■ Z[v1,...,vn]/(m1,m2,v3, ...,vn,p) = GF(p)(v^v2)/(n|fm2) 

D        ■ Z[v , ...,v  ]/(m , ...,m , p) ■ GF(p)[ v , . . ., v  ]/(m , . .., m ) 
n inin inin 

n+1 
Z[v1,...,vn]/(m1, ...,mn,p ). 

We thus start with 

C > AQBJJ, A0S0 + B0T0 = 1, A0   monic in   GF{p)[x] 
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and finish with 

C = A  ^B    ., A    .S iI +B    .S  xl = 1, A    .  monic in Zfv., . . .,v  Mm., .. .,m  , pJ) 
n+1 n+l'   n+1 n+1     n+1 n+1 n+1 1' n        1*       '   n 

A    , - A.    and   B   ,, = B-Cmod v., .. .. v , p). 
n+1       0 n+1       (r 1*       '  n' 

To simplify the computation at each stage, it is best to reduce   C   to 

C.    in   D,[x]    initially:   Put   C    . = C c D ^.[x]    and for   i = n,...,0 i il   J n+1 n+l    ' '       ' 

let 

Then 

hence 

Ci=Ci+l   mod   Pi+l4 DiIxl- 

CiHCi+lH-"HCn+l = C(modpi+l »W 

C  = .  = C    in    D^x], 

so we can use   C   .    in place of   C   when lifting from 

Ci+l=Ci=AiBi   in   Di[xJ 

Ci+1 = Ai+lBi+l   in   Di+l[x^ 

For example, it is only necessary to use   C   t D [x] = GF(p)[v ,x]/(m ) 

when   i = 0. 

Going back to the abstract case, let us write   £   for the domain 

used in Algorithm 3.7Q, to avoid conflict with our current use of   D; 

thus 

E+ = MPJ) 

E - E+/(P) ■ */(?)• 

Now consider the operations performed in Algorithm 3.7Q:   these are 
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operations in   ft,    so we must consider the structure of   £   in the 

application of the algorithm with   E   = Di+1, E = D^   We see that we 

should take 

Ä=fii+1 = D/(ml....f»ltP1+2....,Pk) 

since this gives 

•^»W = D/(rni "VPi+rW-'-'V = Di= E 

^/^i+P = D/(m
1.---.

m
i.

m
i+rPi+2.---.Pk)= Di+i ■ E+ 

as required. 

In the application to   D = Z[ v ,..., v ],    we see that we must 

be prepared to perform Algorithm 3.70 with coefficient arithmetic in 

the domains 

«l      = Z[v1, ...,vn]/(v2, ...,vn,p) = GF(p)[v1] 

fi2      = ^v^ ...,vn]/(m1,v3, ...,vn,p) = GF(p)[v1,v2]/(m1) 

iB      = Zivj, ...,vn]/(m1, ....m^^p) = GF(p)[v1, ...,vn]/(m1, ...,mn_1) 

£ n+1 = Z[v1, . . .,vn]/{m1, .. .,mn). 

Since the   m    are powers of the   v   ,    arithmetic in these domains 

can be regarded as truncated power series operations.   For example, we 

multiply two elements of   jß with an algorithm which drops terms 

with degree at least   j     in any variable   v   .   This assumes that the 

it 
evaluation points   a    are all zero: otherwise the reduction   mod(v   - a ) 
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would actually require a division by   (v   - a )    .   Therefore, if any 

of the   a     are non-zero, it is probably best to translate the given 

polynomial   C(v ,...,v ,x)   to 

C*(vi' ' *'' V x) = C^V1 + ai Vn + an'X) ' 

and factor   C* .   If the complete factorization of   C ''   is    F 

then that of   C   is   F • • F   ,    where 
1 Q ' 

Fjv,,. .., v , x) = F (v, - a,,..., v   - a , x) . 
i   1'       '   n' 1       1 n       n' 

5.4.     Generalization of other algorithms.   The algorithm of Section 3.6, 

for lifting several factors, may now be generalized to several moduli: 

all that is required is to substitute the generalized Hensel construction 

for the single modulus Algorithm Q in step 4.   Similarly, Algorithm 3.8T 

generalizes to several moduli with no difficulty.   The theorems of 

Section 3.9 must also be generalized, but this is also straightforward. 

The following theorem generalizes Theorem 3.9Q. 

Theorem G.   Let   D   be a commutative ring with identity;    p , ..., p 
Jl jk be elements of   D   which are not zero-divisors;   m    = p    m.   = p. 

1        1 *       '   k       k 

for some positive integers   Jii • • • > JiJ P = (?,»•••» Pk); m ■ (m, > • • • *mv) 

Let   A, B,A , B   c D[x]    satisfy 

a. A B   = AB(mod m); 

b. deg(A ) = deg(A)    and   lc(A ) = lc(A) = 1; 

c. A   s A   and   B   = B(mod p); 

d. AS + BTH i{mod p). 

Then   A   = A and B   = B(mod m). 
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Proof:   By induction on   k.   If   k = 1    then the theorem follows 

from Theorem 3.9Q.   Assume   k > 1    and let 

D0- D/{pit,..tPk\ 

Dk-i = D/(mlt....Vl.i»k) 

Dk ■ D/{ml, ...,mk) . 

Then   D0 = Dj^^/lPj, ...>pk_i)    and by a-d we have, in    Dk_1[x], 

A. B 
1   1 

AB 

b'.   degCAj) = deg(A), Ic^) = lc(A) = 1 

c'.    A   = A   and   B   = B(mod p , . .., p. _.) 

d'.   AS + BT=l(modp Pk-J- 

By the induction hypothesis, we therefore have   A   = A   and   B    - B 

in D      [x].   Now since   D        = D,/(p.)   we have 

A   ^ A   and    B   ■ B(mod p ) 
1 IK 

in    D[x].    The generalized Hensel construction gives   S,     and    T, 

satisfying 

ASk . BTk = 1 

in   D [x].   We also have a1 and b* in    D [x],    so Theorem 3.7Q applies 

and we conclude that   A,  = A   and    B,  = B   in   D. [x],    as desired. 
1 1 kl   " 

Now Theorem 3.9T can be generalized by merely substituting 

p , .. ., p     and   J ,»•••» Jk   tor   P   and   j   and   m ,..., m,     for   m   in 

its statement and proof, and invoking Theorem G in place of Theorem 3.90. 
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6.    Summary and conclusions 

By means of abstract algorithms we have presented the algebraic 

theory underlying the essential steps of a "Berlekamp-Hensel" algorithm 

for factoring integral polynomials, including squarefree factorization, 

choice of moduli, Hensel's construction, and searching for true factors. 

The basic ideas of the univariate case algorithms have appeared previously 

in the literature but are presented here in greater detail.    A practical 

basis for a multivariate case algorithm is aJs > riven in the generalized 

Hensel construction. 

Beyond the algebraic theory, we have gone into detailed considera- 

tion of improvements which can be made in the basic algorithms and 

comparisons between various alternative ways of implementing particular 

steps.   In the univariate case, the most significant of these considera- 

tions related to the choice of a prime, the degree compatibility tests, 

and the trailing coefficient test in the true factor testing algorithm.   In 

the multivariate case, we noted the importance of the translation to make 

the evaluation points all zero and of the univariate factorization to reduce 

the number of extraneous factorizations considered. 

A number of interesting open problems have been noted, including 

the existence of an algorithm for factoring integral polynomials with a 

polynomial bounded computing time, the average computing time of the 

univariate Berlekamp-Hensel algorithm for classes of reducible polynomials, 

and the maximum and average computing times of the multivariate algorithm. 
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